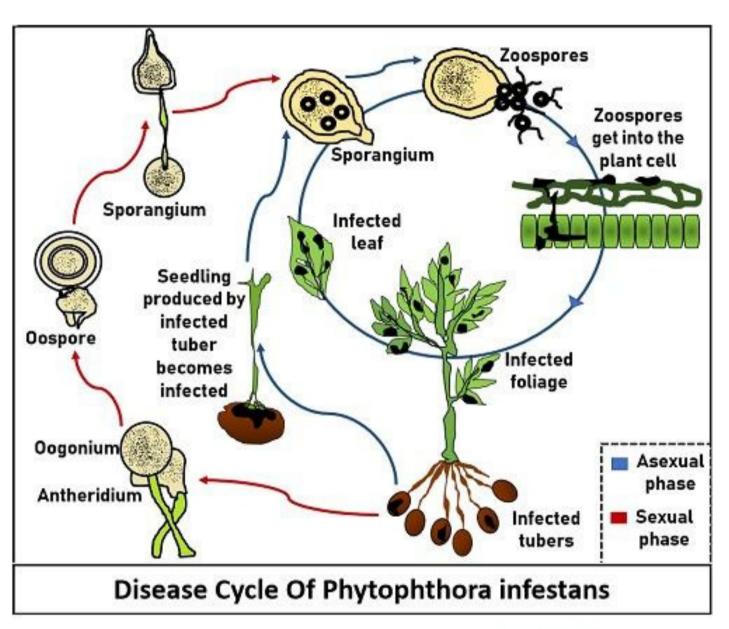


Description:

- Phytophthora is a cosmopolitan genus of Oomycete referred to as the "water molds".
- Obligate plant pathogens containing approximately 60 described species.
- Potato late blight is a crucial disease affecting potato.

- Late blight is responsible for the Irish Famine in the middle of the 19th century.
- It affects both potato foliage in the field and tuber in the storage which can absolutely destroy a crop, producing a 100% crop loss.

LIGHT-TO-DARK GREEN, AND CIRCULAR-TO IRREGULARLY-SHAPED, WATER-SOAKED LESIONS, SURROUNDED BY A HALO OF WHITE, DOWNY SPORANGIA.


Life Cycle

Sporangia, dispersed by wind and water

Sporangia washed off the leaves can infect potato tubers

Sexual reproduction through oospores contributes to genetic variation

Depends greatly on the prevailing humidity and temperature

BIOLOGY READER

ECONOMIC AND GLOBAL SIGNIFICANCE

Late blight has severe economic impact:

- Leading to substantial losses if untreated, echoing historical crises like the Irish famine.
- Estimated worldwide losses exceeding \$5 billion annually.
- Economic losses may be in the form of reduced yield, lower quality of the fruit and increased cost associated with fungicide applications.
- It threatens to global food security as potato is an important cash crop

Integrated pest Management

1

SITE SELECTION

6

Parasitic Oomycetes

2

CROP ROTATION

7

ANTAGONISTIC MICROORGANISMS

3

ELIMINATION OF OVERWINTERING INOCULUM

8

Predatory Microorganisms

4

PLANTING OF PATHOGEN-FREE TUBERS

9

FERTILIZATION

5

HILLING

10

IRRIGATION

Integrated Pest Management

Mancozeb

- Contact
- Multi-site Inhibitors
- Organic fungicide
- EPA registered
- Lebanon Prohibited
- endocrine disruptor and
- toxic to reproduction
- Toxic to aquatic life
- acute toxicity to mammals
- Low to Moderate Toxicity to natural enemies
- MOA:Multi-site inhibitors

Chlorothalonil

- Contact
- Multi-site inhibitor
- may be a CARCINOGEN in humans
- Slightly toxic to bees
- toxic to natural enemies
- MOA: Multi-site inhibitors

Cymoxanil

- Translaminar
- acute Toxicity to mammals
- Slightly toxic to bees
- non-toxic to natural enemies
- MOA: inhibits synthesis
- of nucleic acids

Dimethomorph

- Translaminar
- Cross resistance between all members of the CAA group
- non-toxic to natural enemies
- MOA: inhibits Cell wall synthesis

Famoxadone

- Locally systemic
- highly toxic to fish
- moderately toxic to bees
- non-toxic to natural enemies
- MOA :inhibition of the
- fungal mitochondrial respiratory chain

Ametoctradin

- systemic
- low toxicity to mammals
- low toxicity on natural enemies
- MOA: disrupts
 energy production
 within the
 mitochondria of
 fungal cells

Chemical Control Study

TABLE 1 Fungicides and formulation used in 2017 and 2019 field experiments in Nilgiri Hills of India

Fungicide category (Chemical or Biological group)	Active ingredients	FRAC Code	Trade name	Formulation ^a	Manufacturer	Recommended dose by the manufacturer	Dose used in th present study
Dithio-carbamates and relatives	Mancozeb	МЗ	Indofil® M−45	75% WP	Indofil Industries Limited, India	1.5-2.0 kg/ha	2.0 kg/ha*
Chloronitriles (phthalonitriles)	Chlorothalonil	M5	Kavach®	78.12% WP	Syngenta, India	0.88-1.25 kg/ha	1.25 kg/ha ^{**}
Cyanoacetamideoxime + dithio- carbamates and relatives	Cymoxanil + Mancozeb	27 and M3	Moximate®	8% + 64% WP	Indofil Industries Limited, India	1.5 kg/ha	1.5 kg/ha ^{**}
Oxazolidine- diones + Cyanoacetamideoxime	Famoxadone + Cymoxanil	11 and 27	Equation® Pro	16.6%+22.1% SC	Du Pont India Private Itd, India	500 ml/ha	500 ml/ha**
Triazolo- pyrimidylamine + cinnamic acid amides	Ametoctradin + Dimethomorph	C8 and 40	Zampro®	26.9%+20% SC	BASF India Limited, India	1.0-1.2 L/ha	1 L/ha**

Abbreviations: SC, suspension concentrate; WP, wettable powder.

^aPercentage of active ingredient in commercial product.

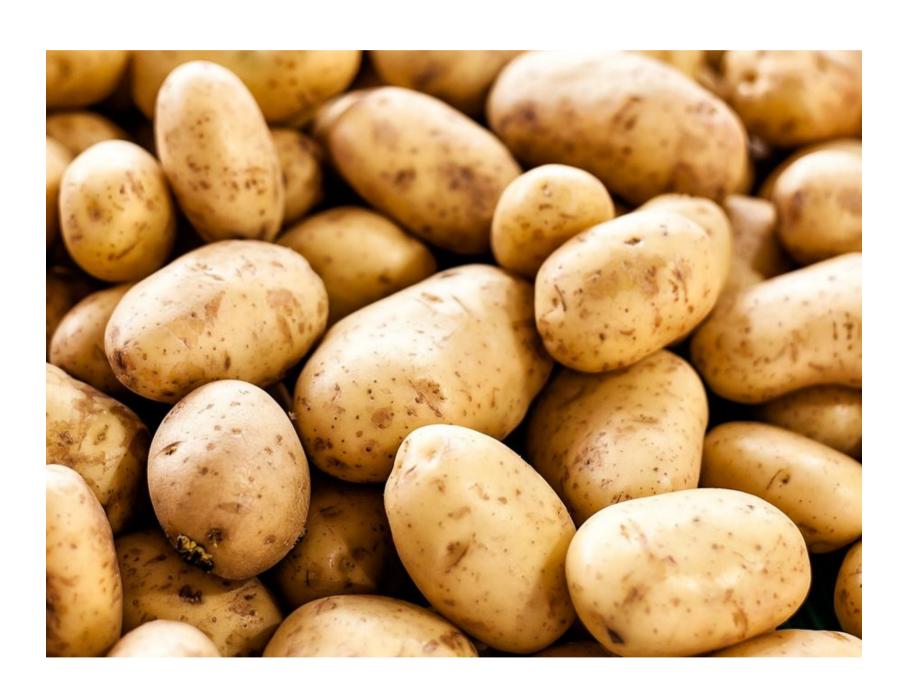
^{*}Spray volume was 800 L/ha

^{**}Spray volume was 500 L/ha.

Chemical Control Study

TABLE 3 Effect of fungicide scheduling against late blight of potato on terminal disease severity

	Terminal disease severity (%)	Reduction over control (%)	Terminal disease severity (%)	Reduction over control (%)
Treatments	2017		2019	
T ₁ - Mancozeb-cymoxanil + mancozeb	29.0 ^b	71.0	48.8 ^b	51.3
T ₂ - Chlorothalonil-famoxadone + cymoxanil	46.7 ^c	53.3	62.5 ^b	37.5
T ₃ - Chlorothalonil- ametoctradin + dimethomorph	32.3 ^b	67.7	57.5 ^b	42.5
T ₄ - Resistant cultivar	0.0 ^a	100.0	0.0 ^a	100.0
T ₅ - Untreated control	100.0 ^d	-	100.0°	-
F-value	F = 82.03		F = 17.22	
	(p < .01)		(p < .01)	


Note: Values within each column with common letter(s) are not significantly different according to Fisher's Protected LSD ($p \le .05$).

Chemical Control Results

TABLE 4 Effect of fungicide scheduling against late blight of potato on total tuber number and weight during 2017 and 2019 field experiments in Nilgiri Hills of Southern India

	Tuber count (n/ha)		Tuber weight (t/ha)	
Treatments	2017	2019	2017	2019
T ₁ - Mancozeb-cymoxanil + mancozeb	281111 ^{bc}	199878 ^b	22.3 ^a	16.6 ^a
T ₂ - Chlorothalonil- famoxadone + cymoxanil	277407 ^{bc}	243190 ^{ab}	16.3 ^b	16.6 ^a
T ₃ - Chlorothalonil- ametoctradin + dimethomorph	309259 ^b	255712 ^a	21.5 ^a	17.7 ^a
T ₄ - Resistant cultivar	416296 ^a	212117 ^{ab}	22.7 ^a	18.9 ^a
T ₅ - Untreated control	220741 ^c	202392 ^b	5.9 ^c	7.5 ^b
F-value	F = 14.45	F = 3.45	F = 21.79	F = 24.97
	(p < .01)	(p < .05)	(p < .01)	(p < .01)

Note: Values within each column with common letter(s) are not significantly different according to Fisher's Protected LSD ($p \le .05$).

Conclusion

RESISTANT CULTIVAR, KUFRI GIRDHARI

CHLOROTHALONIL-AMETOC-TRADIN+
DIMETHOMORPH(T3)

MANCOZEBCYMOXANIL+MANCOZEB (T1)

ALTERING THE PLANTING TIME, USE OF HEALTHY DISEASE-FREE SEED MATERIAL

REMOVAL OF ALTERNATE HOSTS

Reference:

Yuen, J. (2021, January 15). Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Security. https://doi.org/10.1007/s12571-021-01141-3

Mhatre, P. H., Lekshmanan, D. K., Palanisamy, V. E., Bairwa, A., & Sharma, S. (2020, October 27). Management of the late blight (Phytophthora infestans) disease of potato in the southern hills of India. Journal of Phytopathology, 169(1), 52–61. https://doi.org/10.1111/jph.12958

Fungicide resistance management in Potato Late Blight. (2018). . FRAG-UK.

Late blight of potato and tomato. (n.d.). Late Blight of Potato and Tomato. https://www.apsnet.org/edcenter/disandpath/oomycete/pdlessons/Pages/LateBlight.aspx

Nowicki M, Foolad MR, Nowakowska M, Kozik EU. Potato and Tomato Late Blight Caused by Phytophthora infestans: An Overview of Pathology and Resistance Breeding. Plant Dis. 2012 Jan;96(1):4-17. doi: 10.1094/PDIS-05-11-0458. PMID: 30731850.

Nowicki, M., Foolad, M., Nowakowska, M., & Kozik, E. U. (2012, January 1). Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance. . . ResearchGate. https://www.researchgate.net/publication/232068844_Potato_and_tomato_late_blight_caused_by_P hytophthora_infestans_An_overview_of_pathology_and_resistance_breeding

In closing, we extend our deepest gratitude.

Thank you for your unwavering attention and thoughtful engagement throughout this presentation.

Should you require further clarification or wish to explore any aspect further, we're just an email away.

Let's continue this journey together!

